\(\int (a+b \sec (c+d x))^{7/2} \, dx\) [553]

   Optimal result
   Rubi [A] (verified)
   Mathematica [B] (warning: unable to verify)
   Maple [B] (verified)
   Fricas [F]
   Sympy [F(-1)]
   Maxima [F]
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 14, antiderivative size = 403 \[ \int (a+b \sec (c+d x))^{7/2} \, dx=-\frac {2 (a-b) \sqrt {a+b} \left (58 a^2+9 b^2\right ) \cot (c+d x) E\left (\arcsin \left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right )|\frac {a+b}{a-b}\right ) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (1+\sec (c+d x))}{a-b}}}{15 d}+\frac {2 \sqrt {a+b} \left (60 a^3-58 a^2 b+22 a b^2-9 b^3\right ) \cot (c+d x) \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right ),\frac {a+b}{a-b}\right ) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (1+\sec (c+d x))}{a-b}}}{15 d}-\frac {2 a^3 \sqrt {a+b} \cot (c+d x) \operatorname {EllipticPi}\left (\frac {a+b}{a},\arcsin \left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right ),\frac {a+b}{a-b}\right ) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (1+\sec (c+d x))}{a-b}}}{d}+\frac {26 a b^2 \sqrt {a+b \sec (c+d x)} \tan (c+d x)}{15 d}+\frac {2 b^2 (a+b \sec (c+d x))^{3/2} \tan (c+d x)}{5 d} \]

[Out]

-2/15*(a-b)*(58*a^2+9*b^2)*cot(d*x+c)*EllipticE((a+b*sec(d*x+c))^(1/2)/(a+b)^(1/2),((a+b)/(a-b))^(1/2))*(a+b)^
(1/2)*(b*(1-sec(d*x+c))/(a+b))^(1/2)*(-b*(1+sec(d*x+c))/(a-b))^(1/2)/d+2/15*(60*a^3-58*a^2*b+22*a*b^2-9*b^3)*c
ot(d*x+c)*EllipticF((a+b*sec(d*x+c))^(1/2)/(a+b)^(1/2),((a+b)/(a-b))^(1/2))*(a+b)^(1/2)*(b*(1-sec(d*x+c))/(a+b
))^(1/2)*(-b*(1+sec(d*x+c))/(a-b))^(1/2)/d-2*a^3*cot(d*x+c)*EllipticPi((a+b*sec(d*x+c))^(1/2)/(a+b)^(1/2),(a+b
)/a,((a+b)/(a-b))^(1/2))*(a+b)^(1/2)*(b*(1-sec(d*x+c))/(a+b))^(1/2)*(-b*(1+sec(d*x+c))/(a-b))^(1/2)/d+2/5*b^2*
(a+b*sec(d*x+c))^(3/2)*tan(d*x+c)/d+26/15*a*b^2*(a+b*sec(d*x+c))^(1/2)*tan(d*x+c)/d

Rubi [A] (verified)

Time = 0.77 (sec) , antiderivative size = 403, normalized size of antiderivative = 1.00, number of steps used = 7, number of rules used = 7, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.500, Rules used = {3867, 4141, 4143, 4006, 3869, 3917, 4089} \[ \int (a+b \sec (c+d x))^{7/2} \, dx=-\frac {2 a^3 \sqrt {a+b} \cot (c+d x) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (\sec (c+d x)+1)}{a-b}} \operatorname {EllipticPi}\left (\frac {a+b}{a},\arcsin \left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right ),\frac {a+b}{a-b}\right )}{d}-\frac {2 (a-b) \sqrt {a+b} \left (58 a^2+9 b^2\right ) \cot (c+d x) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (\sec (c+d x)+1)}{a-b}} E\left (\arcsin \left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right )|\frac {a+b}{a-b}\right )}{15 d}+\frac {2 \sqrt {a+b} \left (60 a^3-58 a^2 b+22 a b^2-9 b^3\right ) \cot (c+d x) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (\sec (c+d x)+1)}{a-b}} \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right ),\frac {a+b}{a-b}\right )}{15 d}+\frac {26 a b^2 \tan (c+d x) \sqrt {a+b \sec (c+d x)}}{15 d}+\frac {2 b^2 \tan (c+d x) (a+b \sec (c+d x))^{3/2}}{5 d} \]

[In]

Int[(a + b*Sec[c + d*x])^(7/2),x]

[Out]

(-2*(a - b)*Sqrt[a + b]*(58*a^2 + 9*b^2)*Cot[c + d*x]*EllipticE[ArcSin[Sqrt[a + b*Sec[c + d*x]]/Sqrt[a + b]],
(a + b)/(a - b)]*Sqrt[(b*(1 - Sec[c + d*x]))/(a + b)]*Sqrt[-((b*(1 + Sec[c + d*x]))/(a - b))])/(15*d) + (2*Sqr
t[a + b]*(60*a^3 - 58*a^2*b + 22*a*b^2 - 9*b^3)*Cot[c + d*x]*EllipticF[ArcSin[Sqrt[a + b*Sec[c + d*x]]/Sqrt[a
+ b]], (a + b)/(a - b)]*Sqrt[(b*(1 - Sec[c + d*x]))/(a + b)]*Sqrt[-((b*(1 + Sec[c + d*x]))/(a - b))])/(15*d) -
 (2*a^3*Sqrt[a + b]*Cot[c + d*x]*EllipticPi[(a + b)/a, ArcSin[Sqrt[a + b*Sec[c + d*x]]/Sqrt[a + b]], (a + b)/(
a - b)]*Sqrt[(b*(1 - Sec[c + d*x]))/(a + b)]*Sqrt[-((b*(1 + Sec[c + d*x]))/(a - b))])/d + (26*a*b^2*Sqrt[a + b
*Sec[c + d*x]]*Tan[c + d*x])/(15*d) + (2*b^2*(a + b*Sec[c + d*x])^(3/2)*Tan[c + d*x])/(5*d)

Rule 3867

Int[(csc[(c_.) + (d_.)*(x_)]*(b_.) + (a_))^(n_), x_Symbol] :> Simp[(-b^2)*Cot[c + d*x]*((a + b*Csc[c + d*x])^(
n - 2)/(d*(n - 1))), x] + Dist[1/(n - 1), Int[(a + b*Csc[c + d*x])^(n - 3)*Simp[a^3*(n - 1) + (b*(b^2*(n - 2)
+ 3*a^2*(n - 1)))*Csc[c + d*x] + (a*b^2*(3*n - 4))*Csc[c + d*x]^2, x], x], x] /; FreeQ[{a, b, c, d}, x] && NeQ
[a^2 - b^2, 0] && GtQ[n, 2] && IntegerQ[2*n]

Rule 3869

Int[1/Sqrt[csc[(c_.) + (d_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Simp[2*(Rt[a + b, 2]/(a*d*Cot[c + d*x]))*Sqrt[b
*((1 - Csc[c + d*x])/(a + b))]*Sqrt[(-b)*((1 + Csc[c + d*x])/(a - b))]*EllipticPi[(a + b)/a, ArcSin[Sqrt[a + b
*Csc[c + d*x]]/Rt[a + b, 2]], (a + b)/(a - b)], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 - b^2, 0]

Rule 3917

Int[csc[(e_.) + (f_.)*(x_)]/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Simp[-2*(Rt[a + b, 2]/(b*
f*Cot[e + f*x]))*Sqrt[(b*(1 - Csc[e + f*x]))/(a + b)]*Sqrt[(-b)*((1 + Csc[e + f*x])/(a - b))]*EllipticF[ArcSin
[Sqrt[a + b*Csc[e + f*x]]/Rt[a + b, 2]], (a + b)/(a - b)], x] /; FreeQ[{a, b, e, f}, x] && NeQ[a^2 - b^2, 0]

Rule 4006

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.) + (c_))/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Dist[c, In
t[1/Sqrt[a + b*Csc[e + f*x]], x], x] + Dist[d, Int[Csc[e + f*x]/Sqrt[a + b*Csc[e + f*x]], x], x] /; FreeQ[{a,
b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0]

Rule 4089

Int[(csc[(e_.) + (f_.)*(x_)]*(csc[(e_.) + (f_.)*(x_)]*(B_.) + (A_)))/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)
], x_Symbol] :> Simp[-2*(A*b - a*B)*Rt[a + b*(B/A), 2]*Sqrt[b*((1 - Csc[e + f*x])/(a + b))]*(Sqrt[(-b)*((1 + C
sc[e + f*x])/(a - b))]/(b^2*f*Cot[e + f*x]))*EllipticE[ArcSin[Sqrt[a + b*Csc[e + f*x]]/Rt[a + b*(B/A), 2]], (a
*A + b*B)/(a*A - b*B)], x] /; FreeQ[{a, b, e, f, A, B}, x] && NeQ[a^2 - b^2, 0] && EqQ[A^2 - B^2, 0]

Rule 4141

Int[((A_.) + csc[(e_.) + (f_.)*(x_)]*(B_.) + csc[(e_.) + (f_.)*(x_)]^2*(C_.))*(csc[(e_.) + (f_.)*(x_)]*(b_.) +
 (a_))^(m_.), x_Symbol] :> Simp[(-C)*Cot[e + f*x]*((a + b*Csc[e + f*x])^m/(f*(m + 1))), x] + Dist[1/(m + 1), I
nt[(a + b*Csc[e + f*x])^(m - 1)*Simp[a*A*(m + 1) + ((A*b + a*B)*(m + 1) + b*C*m)*Csc[e + f*x] + (b*B*(m + 1) +
 a*C*m)*Csc[e + f*x]^2, x], x], x] /; FreeQ[{a, b, e, f, A, B, C}, x] && NeQ[a^2 - b^2, 0] && IGtQ[2*m, 0]

Rule 4143

Int[((A_.) + csc[(e_.) + (f_.)*(x_)]*(B_.) + csc[(e_.) + (f_.)*(x_)]^2*(C_.))/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_
.) + (a_)], x_Symbol] :> Int[(A + (B - C)*Csc[e + f*x])/Sqrt[a + b*Csc[e + f*x]], x] + Dist[C, Int[Csc[e + f*x
]*((1 + Csc[e + f*x])/Sqrt[a + b*Csc[e + f*x]]), x], x] /; FreeQ[{a, b, e, f, A, B, C}, x] && NeQ[a^2 - b^2, 0
]

Rubi steps \begin{align*} \text {integral}& = \frac {2 b^2 (a+b \sec (c+d x))^{3/2} \tan (c+d x)}{5 d}+\frac {2}{5} \int \sqrt {a+b \sec (c+d x)} \left (\frac {5 a^3}{2}+\frac {3}{2} b \left (5 a^2+b^2\right ) \sec (c+d x)+\frac {13}{2} a b^2 \sec ^2(c+d x)\right ) \, dx \\ & = \frac {26 a b^2 \sqrt {a+b \sec (c+d x)} \tan (c+d x)}{15 d}+\frac {2 b^2 (a+b \sec (c+d x))^{3/2} \tan (c+d x)}{5 d}+\frac {4}{15} \int \frac {\frac {15 a^4}{4}+\frac {1}{2} a b \left (30 a^2+11 b^2\right ) \sec (c+d x)+\frac {1}{4} b^2 \left (58 a^2+9 b^2\right ) \sec ^2(c+d x)}{\sqrt {a+b \sec (c+d x)}} \, dx \\ & = \frac {26 a b^2 \sqrt {a+b \sec (c+d x)} \tan (c+d x)}{15 d}+\frac {2 b^2 (a+b \sec (c+d x))^{3/2} \tan (c+d x)}{5 d}+\frac {4}{15} \int \frac {\frac {15 a^4}{4}+\left (-\frac {1}{4} b^2 \left (58 a^2+9 b^2\right )+\frac {1}{2} a b \left (30 a^2+11 b^2\right )\right ) \sec (c+d x)}{\sqrt {a+b \sec (c+d x)}} \, dx+\frac {1}{15} \left (b^2 \left (58 a^2+9 b^2\right )\right ) \int \frac {\sec (c+d x) (1+\sec (c+d x))}{\sqrt {a+b \sec (c+d x)}} \, dx \\ & = -\frac {2 (a-b) \sqrt {a+b} \left (58 a^2+9 b^2\right ) \cot (c+d x) E\left (\arcsin \left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right )|\frac {a+b}{a-b}\right ) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (1+\sec (c+d x))}{a-b}}}{15 d}+\frac {26 a b^2 \sqrt {a+b \sec (c+d x)} \tan (c+d x)}{15 d}+\frac {2 b^2 (a+b \sec (c+d x))^{3/2} \tan (c+d x)}{5 d}+a^4 \int \frac {1}{\sqrt {a+b \sec (c+d x)}} \, dx+\frac {1}{15} \left (b \left (60 a^3-58 a^2 b+22 a b^2-9 b^3\right )\right ) \int \frac {\sec (c+d x)}{\sqrt {a+b \sec (c+d x)}} \, dx \\ & = -\frac {2 (a-b) \sqrt {a+b} \left (58 a^2+9 b^2\right ) \cot (c+d x) E\left (\arcsin \left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right )|\frac {a+b}{a-b}\right ) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (1+\sec (c+d x))}{a-b}}}{15 d}+\frac {2 \sqrt {a+b} \left (60 a^3-58 a^2 b+22 a b^2-9 b^3\right ) \cot (c+d x) \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right ),\frac {a+b}{a-b}\right ) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (1+\sec (c+d x))}{a-b}}}{15 d}-\frac {2 a^3 \sqrt {a+b} \cot (c+d x) \operatorname {EllipticPi}\left (\frac {a+b}{a},\arcsin \left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right ),\frac {a+b}{a-b}\right ) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (1+\sec (c+d x))}{a-b}}}{d}+\frac {26 a b^2 \sqrt {a+b \sec (c+d x)} \tan (c+d x)}{15 d}+\frac {2 b^2 (a+b \sec (c+d x))^{3/2} \tan (c+d x)}{5 d} \\ \end{align*}

Mathematica [B] (warning: unable to verify)

Leaf count is larger than twice the leaf count of optimal. \(873\) vs. \(2(403)=806\).

Time = 13.63 (sec) , antiderivative size = 873, normalized size of antiderivative = 2.17 \[ \int (a+b \sec (c+d x))^{7/2} \, dx=\frac {2 (a+b \sec (c+d x))^{7/2} \left (58 a^3 b \tan \left (\frac {1}{2} (c+d x)\right )+58 a^2 b^2 \tan \left (\frac {1}{2} (c+d x)\right )+9 a b^3 \tan \left (\frac {1}{2} (c+d x)\right )+9 b^4 \tan \left (\frac {1}{2} (c+d x)\right )-116 a^3 b \tan ^3\left (\frac {1}{2} (c+d x)\right )-18 a b^3 \tan ^3\left (\frac {1}{2} (c+d x)\right )+58 a^3 b \tan ^5\left (\frac {1}{2} (c+d x)\right )-58 a^2 b^2 \tan ^5\left (\frac {1}{2} (c+d x)\right )+9 a b^3 \tan ^5\left (\frac {1}{2} (c+d x)\right )-9 b^4 \tan ^5\left (\frac {1}{2} (c+d x)\right )-30 a^4 \operatorname {EllipticPi}\left (-1,\arcsin \left (\tan \left (\frac {1}{2} (c+d x)\right )\right ),\frac {a-b}{a+b}\right ) \sqrt {1-\tan ^2\left (\frac {1}{2} (c+d x)\right )} \sqrt {\frac {a+b-a \tan ^2\left (\frac {1}{2} (c+d x)\right )+b \tan ^2\left (\frac {1}{2} (c+d x)\right )}{a+b}}-30 a^4 \operatorname {EllipticPi}\left (-1,\arcsin \left (\tan \left (\frac {1}{2} (c+d x)\right )\right ),\frac {a-b}{a+b}\right ) \tan ^2\left (\frac {1}{2} (c+d x)\right ) \sqrt {1-\tan ^2\left (\frac {1}{2} (c+d x)\right )} \sqrt {\frac {a+b-a \tan ^2\left (\frac {1}{2} (c+d x)\right )+b \tan ^2\left (\frac {1}{2} (c+d x)\right )}{a+b}}+b \left (58 a^3+58 a^2 b+9 a b^2+9 b^3\right ) E\left (\arcsin \left (\tan \left (\frac {1}{2} (c+d x)\right )\right )|\frac {a-b}{a+b}\right ) \sqrt {1-\tan ^2\left (\frac {1}{2} (c+d x)\right )} \left (1+\tan ^2\left (\frac {1}{2} (c+d x)\right )\right ) \sqrt {\frac {a+b-a \tan ^2\left (\frac {1}{2} (c+d x)\right )+b \tan ^2\left (\frac {1}{2} (c+d x)\right )}{a+b}}+\left (15 a^4-60 a^3 b-58 a^2 b^2-22 a b^3-9 b^4\right ) \operatorname {EllipticF}\left (\arcsin \left (\tan \left (\frac {1}{2} (c+d x)\right )\right ),\frac {a-b}{a+b}\right ) \sqrt {1-\tan ^2\left (\frac {1}{2} (c+d x)\right )} \left (1+\tan ^2\left (\frac {1}{2} (c+d x)\right )\right ) \sqrt {\frac {a+b-a \tan ^2\left (\frac {1}{2} (c+d x)\right )+b \tan ^2\left (\frac {1}{2} (c+d x)\right )}{a+b}}\right )}{15 d (b+a \cos (c+d x))^{7/2} \sec ^{\frac {7}{2}}(c+d x) \sqrt {\frac {1}{1-\tan ^2\left (\frac {1}{2} (c+d x)\right )}} \left (-1+\tan ^2\left (\frac {1}{2} (c+d x)\right )\right ) \left (1+\tan ^2\left (\frac {1}{2} (c+d x)\right )\right )^{3/2} \sqrt {\frac {a+b-a \tan ^2\left (\frac {1}{2} (c+d x)\right )+b \tan ^2\left (\frac {1}{2} (c+d x)\right )}{1+\tan ^2\left (\frac {1}{2} (c+d x)\right )}}}+\frac {\cos ^3(c+d x) (a+b \sec (c+d x))^{7/2} \left (\frac {2}{15} b \left (58 a^2+9 b^2\right ) \sin (c+d x)+\frac {32}{15} a b^2 \tan (c+d x)+\frac {2}{5} b^3 \sec (c+d x) \tan (c+d x)\right )}{d (b+a \cos (c+d x))^3} \]

[In]

Integrate[(a + b*Sec[c + d*x])^(7/2),x]

[Out]

(2*(a + b*Sec[c + d*x])^(7/2)*(58*a^3*b*Tan[(c + d*x)/2] + 58*a^2*b^2*Tan[(c + d*x)/2] + 9*a*b^3*Tan[(c + d*x)
/2] + 9*b^4*Tan[(c + d*x)/2] - 116*a^3*b*Tan[(c + d*x)/2]^3 - 18*a*b^3*Tan[(c + d*x)/2]^3 + 58*a^3*b*Tan[(c +
d*x)/2]^5 - 58*a^2*b^2*Tan[(c + d*x)/2]^5 + 9*a*b^3*Tan[(c + d*x)/2]^5 - 9*b^4*Tan[(c + d*x)/2]^5 - 30*a^4*Ell
ipticPi[-1, ArcSin[Tan[(c + d*x)/2]], (a - b)/(a + b)]*Sqrt[1 - Tan[(c + d*x)/2]^2]*Sqrt[(a + b - a*Tan[(c + d
*x)/2]^2 + b*Tan[(c + d*x)/2]^2)/(a + b)] - 30*a^4*EllipticPi[-1, ArcSin[Tan[(c + d*x)/2]], (a - b)/(a + b)]*T
an[(c + d*x)/2]^2*Sqrt[1 - Tan[(c + d*x)/2]^2]*Sqrt[(a + b - a*Tan[(c + d*x)/2]^2 + b*Tan[(c + d*x)/2]^2)/(a +
 b)] + b*(58*a^3 + 58*a^2*b + 9*a*b^2 + 9*b^3)*EllipticE[ArcSin[Tan[(c + d*x)/2]], (a - b)/(a + b)]*Sqrt[1 - T
an[(c + d*x)/2]^2]*(1 + Tan[(c + d*x)/2]^2)*Sqrt[(a + b - a*Tan[(c + d*x)/2]^2 + b*Tan[(c + d*x)/2]^2)/(a + b)
] + (15*a^4 - 60*a^3*b - 58*a^2*b^2 - 22*a*b^3 - 9*b^4)*EllipticF[ArcSin[Tan[(c + d*x)/2]], (a - b)/(a + b)]*S
qrt[1 - Tan[(c + d*x)/2]^2]*(1 + Tan[(c + d*x)/2]^2)*Sqrt[(a + b - a*Tan[(c + d*x)/2]^2 + b*Tan[(c + d*x)/2]^2
)/(a + b)]))/(15*d*(b + a*Cos[c + d*x])^(7/2)*Sec[c + d*x]^(7/2)*Sqrt[(1 - Tan[(c + d*x)/2]^2)^(-1)]*(-1 + Tan
[(c + d*x)/2]^2)*(1 + Tan[(c + d*x)/2]^2)^(3/2)*Sqrt[(a + b - a*Tan[(c + d*x)/2]^2 + b*Tan[(c + d*x)/2]^2)/(1
+ Tan[(c + d*x)/2]^2)]) + (Cos[c + d*x]^3*(a + b*Sec[c + d*x])^(7/2)*((2*b*(58*a^2 + 9*b^2)*Sin[c + d*x])/15 +
 (32*a*b^2*Tan[c + d*x])/15 + (2*b^3*Sec[c + d*x]*Tan[c + d*x])/5))/(d*(b + a*Cos[c + d*x])^3)

Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(2776\) vs. \(2(364)=728\).

Time = 13.71 (sec) , antiderivative size = 2777, normalized size of antiderivative = 6.89

method result size
default \(\text {Expression too large to display}\) \(2777\)

[In]

int((a+b*sec(d*x+c))^(7/2),x,method=_RETURNVERBOSE)

[Out]

2/15/d*(a+b*sec(d*x+c))^(1/2)/(b+a*cos(d*x+c))/(cos(d*x+c)+1)*(18*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*(1/(a+b)*(
b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*EllipticE(cot(d*x+c)-csc(d*x+c),((a-b)/(a+b))^(1/2))*b^4*cos(d*x+c)+15*(
cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*EllipticF(cot(d*x+c)-csc(d*x+
c),((a-b)/(a+b))^(1/2))*a^4*cos(d*x+c)^2-30*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d
*x+c)+1))^(1/2)*EllipticPi(cot(d*x+c)-csc(d*x+c),-1,((a-b)/(a+b))^(1/2))*a^4*cos(d*x+c)^2+9*(cos(d*x+c)/(cos(d
*x+c)+1))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*EllipticE(cot(d*x+c)-csc(d*x+c),((a-b)/(a+b))^
(1/2))*b^4*cos(d*x+c)^2+30*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*E
llipticF(cot(d*x+c)-csc(d*x+c),((a-b)/(a+b))^(1/2))*a^4*cos(d*x+c)-60*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*(1/(a+
b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*EllipticPi(cot(d*x+c)-csc(d*x+c),-1,((a-b)/(a+b))^(1/2))*a^4*cos(d*x
+c)+19*a*b^3*sin(d*x+c)+9*b^4*sin(d*x+c)+15*EllipticF(cot(d*x+c)-csc(d*x+c),((a-b)/(a+b))^(1/2))*(cos(d*x+c)/(
cos(d*x+c)+1))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*a^4-30*EllipticPi(cot(d*x+c)-csc(d*x+c),-
1,((a-b)/(a+b))^(1/2))*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*a^4+9
*EllipticE(cot(d*x+c)-csc(d*x+c),((a-b)/(a+b))^(1/2))*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*(1/(a+b)*(b+a*cos(d*x+
c))/(cos(d*x+c)+1))^(1/2)*b^4+74*a^2*b^2*sin(d*x+c)+58*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*Ellipti
cE(cot(d*x+c)-csc(d*x+c),((a-b)/(a+b))^(1/2))*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*a^3*b+58*(1/(a+b)*(b+a*cos(d*x
+c))/(cos(d*x+c)+1))^(1/2)*EllipticE(cot(d*x+c)-csc(d*x+c),((a-b)/(a+b))^(1/2))*(cos(d*x+c)/(cos(d*x+c)+1))^(1
/2)*a^2*b^2+9*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*EllipticE(cot(d*x+c)-csc(d*x+c),((a-b)/(a+b))^(1
/2))*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*a*b^3-9*EllipticF(cot(d*x+c)-csc(d*x+c),((a-b)/(a+b))^(1/2))*(1/(a+b)*(
b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*b^4*cos(d*x+c)^2-18*EllipticF(cot(d*x+
c)-csc(d*x+c),((a-b)/(a+b))^(1/2))*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*(cos(d*x+c)/(cos(d*x+c)+1))
^(1/2)*b^4*cos(d*x+c)-60*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*EllipticF(cot(d*x+c)-csc(d*x+c),((a-b
)/(a+b))^(1/2))*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*a^3*b-58*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*Ell
ipticF(cot(d*x+c)-csc(d*x+c),((a-b)/(a+b))^(1/2))*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*a^2*b^2-22*(1/(a+b)*(b+a*c
os(d*x+c))/(cos(d*x+c)+1))^(1/2)*EllipticF(cot(d*x+c)-csc(d*x+c),((a-b)/(a+b))^(1/2))*(cos(d*x+c)/(cos(d*x+c)+
1))^(1/2)*a*b^3+9*a*b^3*cos(d*x+c)*sin(d*x+c)+58*a^3*b*cos(d*x+c)*sin(d*x+c)+16*a^2*b^2*cos(d*x+c)*sin(d*x+c)-
9*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*EllipticF(cot(d*x+c)-csc(d*x+c),((a-b)/(a+b))^(1/2))*(cos(d*
x+c)/(cos(d*x+c)+1))^(1/2)*b^4+3*tan(d*x+c)*b^4+58*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*(cos(d*x+c)
/(cos(d*x+c)+1))^(1/2)*EllipticE(cot(d*x+c)-csc(d*x+c),((a-b)/(a+b))^(1/2))*a^2*b^2*cos(d*x+c)^2+9*(1/(a+b)*(b
+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*EllipticE(cot(d*x+c)-csc(d*x+c),((a-b)/
(a+b))^(1/2))*a*b^3*cos(d*x+c)^2-120*EllipticF(cot(d*x+c)-csc(d*x+c),((a-b)/(a+b))^(1/2))*(1/(a+b)*(b+a*cos(d*
x+c))/(cos(d*x+c)+1))^(1/2)*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*a^3*b*cos(d*x+c)-116*EllipticF(cot(d*x+c)-csc(d*
x+c),((a-b)/(a+b))^(1/2))*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*a^
2*b^2*cos(d*x+c)-44*EllipticF(cot(d*x+c)-csc(d*x+c),((a-b)/(a+b))^(1/2))*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)
+1))^(1/2)*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*a*b^3*cos(d*x+c)+116*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1
/2)*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*EllipticE(cot(d*x+c)-csc(d*x+c),((a-b)/(a+b))^(1/2))*a^3*b*cos(d*x+c)+11
6*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*EllipticE(cot(d*x+c)-csc(d
*x+c),((a-b)/(a+b))^(1/2))*a^2*b^2*cos(d*x+c)+18*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*(cos(d*x+c)/(
cos(d*x+c)+1))^(1/2)*EllipticE(cot(d*x+c)-csc(d*x+c),((a-b)/(a+b))^(1/2))*a*b^3*cos(d*x+c)-60*EllipticF(cot(d*
x+c)-csc(d*x+c),((a-b)/(a+b))^(1/2))*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*(cos(d*x+c)/(cos(d*x+c)+1
))^(1/2)*a^3*b*cos(d*x+c)^2-58*EllipticF(cot(d*x+c)-csc(d*x+c),((a-b)/(a+b))^(1/2))*(1/(a+b)*(b+a*cos(d*x+c))/
(cos(d*x+c)+1))^(1/2)*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*a^2*b^2*cos(d*x+c)^2-22*EllipticF(cot(d*x+c)-csc(d*x+c
),((a-b)/(a+b))^(1/2))*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*a*b^3
*cos(d*x+c)^2+58*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*EllipticE(c
ot(d*x+c)-csc(d*x+c),((a-b)/(a+b))^(1/2))*a^3*b*cos(d*x+c)^2+3*b^4*tan(d*x+c)*sec(d*x+c)+19*a*b^3*tan(d*x+c))

Fricas [F]

\[ \int (a+b \sec (c+d x))^{7/2} \, dx=\int { {\left (b \sec \left (d x + c\right ) + a\right )}^{\frac {7}{2}} \,d x } \]

[In]

integrate((a+b*sec(d*x+c))^(7/2),x, algorithm="fricas")

[Out]

integral((b^3*sec(d*x + c)^3 + 3*a*b^2*sec(d*x + c)^2 + 3*a^2*b*sec(d*x + c) + a^3)*sqrt(b*sec(d*x + c) + a),
x)

Sympy [F(-1)]

Timed out. \[ \int (a+b \sec (c+d x))^{7/2} \, dx=\text {Timed out} \]

[In]

integrate((a+b*sec(d*x+c))**(7/2),x)

[Out]

Timed out

Maxima [F]

\[ \int (a+b \sec (c+d x))^{7/2} \, dx=\int { {\left (b \sec \left (d x + c\right ) + a\right )}^{\frac {7}{2}} \,d x } \]

[In]

integrate((a+b*sec(d*x+c))^(7/2),x, algorithm="maxima")

[Out]

integrate((b*sec(d*x + c) + a)^(7/2), x)

Giac [F]

\[ \int (a+b \sec (c+d x))^{7/2} \, dx=\int { {\left (b \sec \left (d x + c\right ) + a\right )}^{\frac {7}{2}} \,d x } \]

[In]

integrate((a+b*sec(d*x+c))^(7/2),x, algorithm="giac")

[Out]

integrate((b*sec(d*x + c) + a)^(7/2), x)

Mupad [F(-1)]

Timed out. \[ \int (a+b \sec (c+d x))^{7/2} \, dx=\int {\left (a+\frac {b}{\cos \left (c+d\,x\right )}\right )}^{7/2} \,d x \]

[In]

int((a + b/cos(c + d*x))^(7/2),x)

[Out]

int((a + b/cos(c + d*x))^(7/2), x)